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Abstract—Digital steganography is the technique of hiding
secret information into a file, known as the carrier. Traditional
approaches lead to highly detectable steganography with a
low ratio of information hidden to information carried over.
Novel methods based on Artificial Intelligence (AI) are recently
emerging, revamping steganography and steganalysis leading
to an increase in hiding capacity. In this paper, we show
how deep learning can be a viable approach to achieve audio
steganography. We build a Convolutional Neural Network (CNN)
inspired by the encoder-decoder model, that is capable of hiding
a spectrogram representation of a secret audio file into a carrier
spectrogram of the same length. We find that this method
produces a lossy output but that the words from the secret and
cover audio are audible. We also find that this method is resistant
to noise.

Index Terms—digital forensics, steganography, artificial intel-
ligence, neural networks

I. INTRODUCTION

The first written account of steganography dates back to the
15th century and appears in Steganographia [1] by Johannes
Trithemius. Information was embedded into images, articles or
shopping lists with the purpose of making a hidden message
as hard as possible to be identified.

Modern digital steganography, uses the same approach to
hide generic payloads, called secrets, into transport mediums,
called carriers. These containers are usually well-known media
formats such as images, video or audio files. The powerful
idea behind digital steganography is that the output carrier file,
which is carrying the secret data, not only highly resembles
the original one before the secret data is inserted, but it is also
a perfectly legal media file which is not affected in any way
in terms of human perception. The result is that the carrier file
can be safely and publicly exchanged between parties.

On the other hand, steganalysis describes the techniques to
detect and possibly identify a message hidden within a carrier.

The practice of steganography is agnostic to the media
format used such that the hidden data can be improved by
encrypting it and thus reducing the probability that steganal-
ysis approaches could detect the data.

Steganography is sometimes used in criminal contexts,
allowing files to be publicly released with reasonable con-
fidence that they will not be discovered [2]. On the other
side, steganography finds legitimate usage as a way to embed
authorship information as in digital watermarks.

Modern steganalysis approaches easily detect if a file is
carrying hidden data, as the insertion of this secret data alters
the statistics of the medium itself. This is why common digital
steganography hides small messages in big mediums, so that
carriers are not heavily and evidently altered. In the case of
images used as mediums, this is usually referred to as the
bits-per-pixel (bpp): in traditional approaches, the amount of
information is set to 0.4bpp or even lower. On the other side,
depending on the type of carrier media format, information
can be hidden in different file areas, depending on the specific
media format internal structures.

The traditional approach deals with the medium’s Least
Significant Bit (LSB)(s) to put secret information, as alter-
ations at that level will less likely be visible. There exist
many advanced methods to distribute the secret information
in the carrier message in order to preserve the image’s first
and second order statistics, HUGO [3] being the most popular
one.

Advances in the field of Artificial Intelligence (AI) has
largely improved steganalysis, the practice of finding hidden
messages. In this area, a very basic approach consists of
training a Deep Neural Network (DNN) to decide in which
LSB to place the binary representation of a text message. A
DNN is used to select which bits to extract from the container
image, for instance.

There are many neural network architectures each with
many different applications. The most popular architecture for
embedding information is the encoder-decoder neural network,
introduced by N. Kalchbrenner in his PhD thesis Encoder-
Decoder Neural Networks. In his words [4],

Encoder-decoder neural networks are probabilistic
conditional generative models of high-dimensional
structured items such as natural language utter-
ances and natural images. Encoder-decoder neural



networks estimate a probability distribution over
structured items belonging to a target set conditioned
on structured items belonging to a source set. The
distribution overstructured items is factorized into
a product of tractable conditional distributions over
individual elements that compose the items. The net-
works estimate these conditional factors explicitly.

This architecture has been applied to solve complex learning
problems involving linguistics, natural images and videos. The
Recurrent Neural Network (RNN) variant is currently what
powers Google’s popular automated translation system [5]. In
his thesis, Kalchbrenner proposes an encoder-decoder variant
based solely on convolutional layers which performs well
in the domain of images. When applied to the problem of
embedding information, the architecture learns a distribution
of secret and cover assets which results in an encoding and
decoding process which, in simple terms, allows to extract
the important features from the secret, encode them into the
carrier while maintaining a visually unchanged carrier and
finally decoding the secret from the carrier.

While steganography applied on DNN paradigm has been
heavily researched for images, which are most likely the best
media format to be used in an encoder-decoder model, the
same can not be said for audio.

We decided to work with an uncompressed and lossless
audio format WAVEform audio file format (WAV), since each
file carries a large amount of information, which will translate
to better feature extraction by the network and ultimately a
better quality output cover and secret. This network can also be
trained on compressed and lossy file formats such as Moving
Picture Expert Group-1/2 Audio Layer 3 (MP3).

Specifically for audio signals, carriers have to be compliant
to several properties, in order to be able to hide a secret
message without impacting the human auditory perception:

1) Inaudibility of distortion (or Perceptual Transparency)
means that the audio file carrying the secret should not
sound distorted when compared to the unmodified file.

2) Robustness is defined as the relation between inaudible
inadvertent, e.g., resizing, rescaling or expansion of com-
motion, and advertent information, e.g., such as control
information.

3) Data Rate (or Capacity) refers to the audio codec prop-
erties that have to be maintained, such as the original
medium sample rate.

II. RELATED WORK

In recent years, we have seen considerable steganographic
improvements since LSB encoding. Most frameworks revolve
around image hiding, such as HUGO (Highly Undetectable
steGO) [3] from Using High-Dimensional Image Models to
Perform Highly Undetectable Steganography which preserves
the statistics of an input image by relying on the principle of
minimal impact embedding [6].

When looking at digital audio steganography, most methods
exploit physical properties of sound waves and human hearing,

i.e., tone insertion place merges the cover audio signal with
two tones of known frequencies and low power level. S.
Mishra et al., in Audio Steganography Techniques: A Survey
[7] exhaustively describe such methods. A Comparative study
of digital audio steganography techniques [8] defines compar-
ison criteria such as hiding rate, imperceptibility and filtering
that can be used to evaluate the different steganographic
systems.

Y. Qian et al., in Deep learning for steganalysis [9] show
that DNN can be used for steganalysis. They propose a new
paradigm, shifting away from common statistical detection
models, for steganalysis to learn features automatically by
using a Convolutional Neural Network (CNN). This research
yields outstanding results and introduces the effectiveness of
AI techniques in steganography.

HiDDen: Hiding Data With Deep Networks [10], by J.
Zhu, shows that neural networks can learn to use invisible
perturbation for data hiding. They borrow from the auto-
encoder network model by jointly training an encoder and
decoder network and find that the algorithm is robust to noise.

In a similar way, Hiding images in plain sight: Deep
steganography [11], by S. Baluja, shows that it is possible to
hide an image of dimensions N×N×RGB into another image
of the same dimensions, with very little discrepancy, achieving
an impressive 1:1 ratio of information hidden to the cover
image’s data. Unlike previous studies in which the hidden
information must be received with intact integrity, the require-
ments are relaxed to allow the secret image to be received with
some degradation — the paper describes an acceptable trade-
off in image quality. Since the amount of information hidden
is significantly higher than other techniques, the model does
not conceal the fact that a secret image may be present, as can
be shown from statistical analysis.

III. PROBLEM

Steganography is a well-known topic that has been re-
searched in a very exhaustive way. The shortcomings of
the traditional approaches, which were easily detectable and
poorly performing, led to an obvious and inevitable skepticism
on steganography use-case scenarios. And even though the AI-
based techniques are applying a very novel and modern ap-
proach, revamping steganography and steganalysis once more,
for what steganography is concerned, it stays highly detectable.
As a matter of fact, increasing the ratio of information hidden
in a single medium to a high boundary inevitably increases the
chances of steganography being detected, as highly interfering
with original medium statistics.

Nonetheless the very same high ratio makes the technique
intriguing. Even though an altered carrier asset can be de-
tected, it does not necessarily mean that the secret information
can be unveiled. In fact, without the exact same neural network
used to inflate the medium with the secret information, it is
not possible to extract the asset. This can only be done with
the very same model composed of internal layers, filters, along
with the same weights and biases associated each filter. More
importantly, applying the learning capabilities of a DNN to the
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Fig. 1. Network model composed of Preparation, Hiding and Revealing networks

problem of hiding as much information as possible into an au-
dio frame has not been explored yet. Thus, this research aims
to apply the novel AI-based image steganography approach
against audio signals.

IV. RESEARCH QUESTION

This section presents our main research question and sub-
questions that follow from it.

Can we improve audio steganographic performance,
in terms of inaudibility of distortion, robustness,
and data rate, by using an DNN-based approach to
embed a secret audio message into a carrier audio
file?

This question can be divided into these sub-questions:
1) What audio pre-processing steps must be taken in order

to find an image representation suitable for input to the
neural network?

2) Given that encoder-decoder based neural networks behave
efficiently for natural images, what is the best neural
network architecture and structure to hide a sound into a
sound, both represented as images?

V. EXPERIMENT DESIGN & IMPLEMENTATION

Encoder-decoder (also known as auto-encoding) networks
are effectively data compression algorithms which are de-
signed for a specific type of data. The main difference with
classical compression algorithms is that the network learns
from examples. Typical encoder-decoder networks are de-
signed to receive a single input and output. By mathematically
comparing the distance between the output and the input they
are able to adjust the weights and biases between layers,
such that the output will more closely resemble the input.
This process of calculating the distance is done by a loss
function, which outputs a number in the [0, 1] interval, with
0 representing a perfect match between the output and the
input. The value of the loss function is a good indicator of the
performance of any given model.

In the following section, we represent our secret and carrier
as a sequence such that a given audio signal x of length l

in seconds, recorded at a sample rate S of 16000kHz can be
represented as x = (x0, x1, ..., xt) where xi ∈ R represents
an arbitrary amplitude value.

A. Model

There are three components that make up our network, as
illustrated in fig. 1. The Preparation network P is tasked with
encoding the secret spectrogram all the while extracting its
most recognisable features. P takes in the secret s and encodes
it into se such that se = P (s).

The Hiding network H takes in the output of the Prepa-
ration network as well as the cover spectrogram c and hides
the secret into a modified carrier image c′ such that c′ =
H(P (s), c).

The third and final network, the Revealing network R,
receives the output of the Hiding network and decodes the
secret image s′ from it such that s′ = R(c′)

From H , we can calculate a mean squared error loss ||c−
c′|| that indicates the difference between the cover and the
modified cover.

Similarly, R gives us ||s − s′|| which tells us how closely
the output secret resembles the input secret.

The attentive reader will notice that if the networks are
trained separately, the Hiding network would simply discard
se and perform the identity operation on c. This is why all
three networks are trained simultaneously with the goal of
minimising the following loss function,

L(s, c) = λc||c− c′||+ λs||s− s′||

where λc and λs are loss weight for the carrier and secret loss,
respectively. They define how much the output loss of each
model contributes to the overall loss value.

In practice, the sender only requires the trained Preparation
and Hiding network, and the receiver only needs the Revealing
network.

The network is made up of 3 convolutions layers at the
Preparation network, 5 at the Hiding network and 7 at the
Revealing network. We tried a varying number of layers but
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found that this configuration produced the best output. Each
layer is made up of 64 neurons, and we use a kernel size.

As is common for convolutional networks, we used Recti-
fied Linear Unit (ReLU) as an an activation function for our
neurons. ReLU is an activation function that is the identity
function for all positive values and zero for all negative values.
In practice, this makes it easy to compute, which speeds up
training.

B. Dataset

In our experiment, we use the TIMIT Acoustic-Phonetic
Continuous Speech Corpus [12]. This collection is made up of
short readings of phonetically rich sentences by 630 different
American-English speakers. Along with the waveforms, the
dataset is collecting the time-aligned orthographic, phonetic
and word transcriptions. For what the experiment is concerned,
only the speech waveform files are used.

The dataset comes already split in TRAIN and TEST
subsets: the first one contains 4620 audio files, while the latter
1680. Each sample comes in the shape of a WAV file. Each
file has a frame rate of 16kHz.

As each sample represents a variable sentence, there is no
common factor in the dataset in terms of audio length: the
collection varies from very short audio waveforms of 0.92 to
longer ones of 7.79 seconds. To reduce the study complexity,
the variety in length has been removed by fixing samples to 2.5
seconds, with samples being either cut or looped depending
on the original length. Below the command used to apply the
constraint:

1 ffmpeg -stream_loop -1 -i "${src}" "${dst}"
-ss 00:00:00.00 -to 00:00:02.500

Fig. 2. Applying a STFT transformation to an audio signal

C. Samples representation

Since convolutional encoder-decoder networks and their
variants perform well with images but not sound, we need
to convert our audio signal into an image. There are various
approaches to do this, depending on the type of audio we are
trying to represent. One way is to convert the sound wave given

by the audio stream from the time domain into the frequency
domain. This allows us to make a spectrogram representation
of an audio signal. We apply a Fourier transform to our audio
signal and therefore convert our the signal from amplitude over
time to frequency over time, as illustrated in fig. 3.

Originally, every audio signal is represented as a sound
wave, where every sample has an associated amplitude which
can be placed on a x-axis representing time. We divide the
sound wave into small windows (of the order of 10−2 seconds)
and apply a Fourier transform to each window using the Short
Time Fourier Transform (STFT) algorithm. We use a small
analysis window to reduce the dimensionality of our data.
The window is progressively shifted according to a given
value known as the step, such that multiple windows and
spectrograms overlap in time: this step is set to 25% of the
sliding window. This gives the algorithm multiple viewpoints
on the audio stream which increases our ability to extract the
sounds of interest. In layman terms, the STFT algorithm will
decompose an audio wave into a given number of sinusoidal
waves, being the number of Fast Fourier Transform (FFT).
Setting the FFT is a compromise between having an accurate
spectrogam or having good compression. Therefore represent-
ing complex audio signals such as music requires a high FFT
value (usually 2048) whereas speech processing is 512 [13].

D. Training

After processing a given pair of secret and cover images as
explained in the paragraph above, the network will calculate
the loss. In an attempt to minimise this loss in the upcoming
runs, the networks will adjust the weights between connected
neuron of the various layers through a process called back-
propagation. Since the dataset is too large to fit in memory
the network is trained by processing subsets of the data, also
known as batches. A single iteration over the entire dataset is
called an epoch and in order to learn a probability distribution
over structured items, such as images, the network must iterate
over the dataset many times. In the specific case, 100 epochs
have been done, using the whole dataset of 6300 samples
divided into 32 batches.

Furthermore, we use a custom learning rate schedule to
adapt the weight that is given to the loss based on the
amount of epochs for which the model has been training. This
modification brings the benefit of making breaking changes in
the network at the beginning of the training, when bigger rates
get used, while the more the training is going, the more this
rate decreases, resulting in a more granular tuning towards the
end. Below the schedule used, in pseudo-code:

1 function scheduler(epoch)
2 if epoch < total_epochs / 4 then
3 return 0.001
4 else if epoch < total_epochs * 2 / 4 then
5 return 0.0003
6 else if epoch < total_epochs * 3 / 4 then
7 return 0.0001
8 else
9 return 0.00003
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Fig. 3. Different representations of the same audio signal

VI. RESULTS & DISCUSSION

The first noticeable difference between the spectrograms in
fig. 4 is that the output is significantly darker. In the audio
files, this difference in gain means that the the output secret
and cover are less loud the their input counterparts. The output
spectrograms clearly show that the output has loss at certain
frequencies, this manifests itself as black bands that run from
the right to the left of the spectrogram. The darker bands are
clearer at the top of the output spectrograms which indicates
that we have more loss at higher frequencies. Despite the clear
loss, the output spectrograms still display bright bands running
from the top to the bottom. These are words spoken by the
speakers and are remain intelligible in the output audio. Note
that the spectrogram shows that there is no loss in the time
domain meaning the length of the audio remains the same,
unlike other audio steganography techniques which lengthen
the carrier.

It is important to realise that our audio from the dataset was
made in a noise free environment which results in particularly
clean looking input spectrograms. Real-world recordings will
most likely have background noise which will impact the
quality of the audio. In practice, we could modify the dataset to
overlay noise into each audio file which may have resulted in
less noticeable differences between the input and ouput audio
files and spectograms.

Since the network could learn to perform LSB encoding,
we experimented with adding a noise layer of 0.01 to the
modified carrier and found that the output audio was still
comprehensible.

Inspired by audio classification networks, we attempted
to apply a Mel-scale transformation to the resulting STFT
spectrogram. Human hearing ranges from 20Hz to 20kHz.
This being said, we are capable of distinguishing between
lower frequency sounds better than higher frequency sounds.
The mel scale applies a logarithmic transformation from
frequencies into mel (the unit’s name comes from the word
melody). We applied this transformation in the hope that the
encoded spectrograms would have a representation closer to
the way human hearing works. Librosa, the audio library we

used to convert back from a mel spectrogram to audio use the
Griffin-Lim algorithm which estimates a signal from its STFT
whereas the Inverse Short-Time Fourier Transform (ISTFT)
allowed us to specify the number of FFT used to decompose
the signal in the first place. In summary, the transformation
from mel-scale spectrogram to audio was lossy where the
transformation from a STFT based frequency spectrogram to
audio was not, for our particular audio library.

A. Limitations

Since the carrier message should be inconspicuous we can-
not say that our network produces good audio steganography.
Improvements and tweaks to the number of FFTs as well as
the number of layers, and epochs that the network is trained
for could theoretically significantly reduce the amount of loss
we are experiencing.

Our final trained model weighs 25MB which is quite
sizeable. This model contains the weights connecting every
neurons from every layer for all three networks. If this
approach is to be implemented in a disk space restrained
environment we could employ the following techniques to
reduce the size of the model:

1) The optimal brain damage algorithm [14] can be used to
remove connections between neurons that are rarely used,
or neurons that rarely fire to begin with.

2) We can split the model into a Preparation and Hiding
network to be used by the sender and a Revealing network
to be used by the receiver.

Since our network is trained on a speech dataset it would
not perform well with other types of sound. Attempting to
encode more complex and layered audio such as music could
theoretically be done with a large enough dataset of said audio
type. We would also need to reconsider certain parameters
such as the number of FFTs used in the STFT.

VII. CONCLUSIONS

We find that audio steganography using deep learning has
several interesting properties compared to other methods.
Namely, it is noise resistant and provides a comparatively
high hiding capacity thanks to the encoding and decoding net-
works. The already mentioned LSB-based approach, although
representing a very simple and easy way to hide content with
high bit rate, has the drawback of being highly detectable,
as well as extractable and, thus, destroyed. Furthermore, what
is in common with all the well-known approaches to audio
steganography [8] resides in the fact that several areas in
audio representations have less value than others, in terms
of impact in human hearing perception, and thus are more
suitable for being inflated with additional data. This method,
although effective, has a huge limitation: those areas have an
upperbound beyond which the resulting audio signal would be
damaged or highly distorted. Such a constraint imposes a very
low hiding ratio.

On the other side, in DNN-based steganography, regardless
of how a specific area in a carrier asset is critical in terms
of impact to the perceived human hearing, the criteria used to

5



Fig. 4. Input and output cover and secret spectrograms

hide an information is based on statistics: after the network
has been trained with thousands samples, it will be able to
tell how a bit replacement will affect the similarity between
the original asset and the one given in output, in terms
of loss. Such a method of calculating what is worth to be
replaced or kept as it was, leads to a model completely
agnostic of the underlying data type. As a drawback, though,
the audio files produced from the conversion of the output
spectrograms are noisy and therefore are not viable for real-
world steganographic applications which require that modified
cover are inconspicuous.

A. Future work

For simplicity reasons, the research has been scoped down
to deal only with utterances of the same 2.5s length: this
constraint could be removed by introducing pre-processing
padding measures, with which samples length could be
stretched either by putting fixed zeros or — probably more
suitable for the purpose — by looping the sample itself. Such
an approach, would possibly enable the chance to be able to
combine cover-secret pairs of different sizes.

Furthermore, the selected dataset is made up of a collection
of recorded sentences. This represents not only a constraint
in terms of semantic value, but more likely in terms of
internal data structure. In fact, the samples used are mono
recordings, i.e., audio assets composed of a single signal
channel. The model described in this research relies highly
on the audio samples length and number of channels. The

network could theoretically be used for two-channel samples
but would require modifications in order to support a higher
number of channels.

B. Model & Code

The code for the project can be found at https://github.com/
ppartarr/audioSteganography alongside a pre-trained model
and audio samples.
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